skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peter, Nicolas_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this study, a combinatorial and high-throughput approach was leveraged to investigate nanotwin behavior in the ternary CuNiAl alloy system. Combinatorial co-sputtering was used to synthesize 169 unique CuNiAl alloy compositions, which were characterized in both the as-sputtered and annealed conditions to elucidate relationships between composition, nanotwin formation, and phase evolution. Compositional effects on phase formation were investigated using high-throughput X-ray diffraction, while scanning transmission electron microscopy was used to identify nanotwin compositional boundaries and isolate the roles of varied composition and nanotwin formation on microstructural evolution. It was determined that Al content was the primary variable influencing thermal evolution in the nanotwinned CuNiAl alloys, as it altered the thermodynamic driving forces by changing composition and reducing the as-sputtered twin boundary spacing. Overall, this work demonstrates a novel approach to globally study unexplored nanotwin synthesis domains beyond binary alloys. Graphical Abstract 
    more » « less